Связевая система

Связевая система

Конструкции безригельного каркаса

В регионах Урала и Сибири наибольшее распространение получила модификация систем типа КУБ, называемая «Конструкции безригельного каркаса» или КБК. Конструкции Безригельного Каркаса (КБК) были разработаныв 2006 году ОАО «12 Военпроект» совместно с ЦПО при Спецстрое России по заказу ООО ПЦ «КУБ-Сибирь». В итоге родился совершенно новый комплект документации конструктивной системы, который в 2007 году прошел сертификацию в ФГУП «ЦПП» г. Москва на соответствие требованиям нормативных документов в области строительства. В КБК одновременно совмещены все плюсы и эффективные особенности сборно-монолитных систем «УСМБК», «КУБ-1», «КУБ-2», «КУБ-3» на основании их реализации в строительстве, а также применены инновационные разработки, подтвержденные экспериментальными работами.

КБК – универсальная система, применяемая для строительства практически всего спектра городских сооружений: зданий жилого, социально-культурного, административного и бытового назначения, многоуровневых парковок, складов, некоторых производственных сооружений. За основу КБК была выбрана отечественная разработка — система безригельного каркаса «КУБ-2.5». Она в течение многих лет применялась в нашем военно-строительном комплексе, была отработана с конструкторской точки зрения и адаптирована к существующей российской технологической культуре в строительной промышленности. Модификация системы КУБ под аббревиатурой УСМБК использовались при строительстве объектов Министерства обороны в различных странах.

По срокам строительства безригельные системы могутконкурировать только зданиявозводимые из железобетонных панелей. Но качество панельного жилья не отвечает современным требованиям. В частности, многих покупателей не устраивает невозможность перепланировок и неизбежная однотипность возводимых зданий.

Преимущество безригельного каркаса КБК, прежде всего, заключается в ограниченном наборе составляющих элементов, с одной стороны, и в богатстве возможностей внутренних планировочных решений, создания неповторяющегося набора квартир из комнат и объемов, использовании местных материалов для устройства внешних ограждающих стен и внутренних перегородок, с другой стороны. Проще решается проблема перепланировки внутренних пространств.

Преимущества сборнойбезригельной системы КБК с экономической точки зрения подтверждаютсятем фактом, что в Сибири и на Урале не единичны случаи, когда подрядчики, применяющие конструктивную безригельную систему строительства, выигрывали тендеры у компаний, строящих в «монолите».

Система КБК дает возможность на единой промышленной, технологической основе строить как комфортное, так и «элитное» и «социальное»жильё. Причём, «социальное» или «элитное» назначение жилья реализуется за счет объема, отделки и т.п. При этом система КБК позволяет (при необходимости) без сноса, путем перепланировки, превратить ранее «социальный» дом в «элитный» или наоборот.

Конструкции Безригельного Каркаса (КБК)

Система КБК значительно лучше приспособлена под сложные условия строительства. Она более индустриальная: применяется меньше монолитного бетона на строительной площадке, а значит, возникает меньше сложностей зимой. Нет необходимости привлекать большой штат квалифицированных сотрудников и спецтехники. Таким образом, основная масса проблем переносится на завод. Обеспечение качества каркаса в значительной мере лежит на заводе и зависит от качества металлоформ. Такая система менее трудоемкая и по скорости возведения здания превосходит практически любую другую. Так, в день бригада из 5-6 человек спокойно монтирует 200кв. м (при наличии железобетона).

Если говорить о технической стороне технологии, то можно отметить, что система конструкций предусматривает применение неразрезных (многоэтажных) колонн сечением 400 (мм) х 400 (мм) с предельной длиной 9900 (мм). При стыке колонн предусматривается принудительный монтаж, состоящий в сопряжении фиксирующего стержня верхней колонны с патрубком верхнего торца нижней колонны. В местах примыкания перекрытий (на высоте этажа) в колоннах предусмотрены шпонкообразные вырезы, в пределах которых арматура колонны обнажена.

Система конструкций безригельного каркаса «КБК» предусматривает применение панелей перекрытия заводского изготовления максимальными размерами 2980 (мм) х 2980 (мм) х 160 (мм).

Панели перекрытия в зависимости от местоположения в каркасе могут быть надколонные (НП), межколонные (МП) и средние (СП).

Монтаж конструкций ведётся в следующем порядке: монтируются колонны и замоноличиваются в фундаменте; устанавливаются и привариваются к арматуре колонн надколонные панели; далее монтируются межколонные и средние панели. При установке панелей арматурные выпуски торцов совмещаются таким образом, что образуется петля, в которую вставляется арматура.

Система конструкций безригельного каркаса предназначена для строительства широкого спектра городских сооружений (жилых, общественных и вспомогательных зданий административно-бытового назначения). С использованием сборно-монолитнойбезригельной системы возводятся не только высотныездания, но и школы, детские сады и т.п.

Такая универсальность системы «КБК» обеспечивается за счёт сочетания следующих свойств:
а) Несущую основу каркаса здания в «КБК» составляют колонны и плиты перекрытия, выполняющие роль ригелей, для элементов жёсткости используют связи или диафрагмы, что позволяет обеспечить в зданиях пролёты 3.0, 6.0 м, высоту этажей в зданиях 2.8, 3.0, 3.3 и 3.6 при основной сетке колонн 6 х 6 м.
Несущая способность перекрытий позволяет использовать каркас в зданиях с интенсивностью расчетных нагрузок на этаж до 1200 (кг/м2).
б) Конструкция стен предполагает выполнение ими только ограждающей функции. Стены могут разрабатываться с поэтажной разрезкой, т.е. опираться на плиты перекрытия и передавать вертикальную нагрузку от собственного веса на плиты перекрытия каждого этажа; навесными или самонесущими, что даёт возможность максимального использования для ограждающих конструкций местных не конструкционных материалов, в том числе монолитных стен.
в) В зданиях высотой до 5 этажей в обычных условиях строительства применяется рамная конструктивная схема без использования дополнительных элементов жесткости, в остальных случаях – рамно-связевая конструктивная схема, в которой используются связи или диафрагмы.

Система рассчитана на возведение зданий высотой до 25 этажей (до 75 метров) в обычных условиях строительства. В районах с сейсмичностью до 9 баллов включительно по 12 – бальной шкале применение «КБК» ограничено требованиями таблицы 8* СНиП II-7-81* «Строительство в сейсмических районах» для каркасных зданий.

Конструкции Безригельного Каркаса (КБК)

Конструктивные элементы КБК изготавливаются и монтируются с применением единого технологического оборудования. Каркас монтируется полностью из изделий заводского изготовления с последующим замоноличиванием узлов, в конечной стадии конструкция является монолитной.

Таким образом, формообразующие возможности каркаса в системе «КБК» имеют широкие диапазоны количества этажей и архитектурно-пространственных решений. Система КБК позволяет использовать широкий спектр пластики фасада, создавать пространственно интересные нетиповые планировки, отвечающие поставленной задаче.

Расчёт параметров безригельного каркаса с плоскими перекрытиями производится с использованием расчётных моделей, реализуемых программными комплексами с применением программных продуктов высокого уровня (ПК SKAD; ПК ING +; ПК «ЛИРА» и других).

Одним из основных отличий системы КБК от системы КУБ 2,5 является адаптация системы под требования действующего законодательства и получение необходимых сертификатов.

Во-первых, система «КБК» комплектуется отдельным пакетом документации – «Конструкция безригельного каркаса для многоэтажных жилых и общественных зданий». Данный комплект документации сертифицирован ФГУП «ЦПП» г. Москва на соответствие требованиям нормативных документов в области строительства. Выдан сертификат № POCCRU.CP48.C00047 от 05.04.2007 г.

Во-вторых, в целях подтверждения огнестойкости элементов каркаса зданий на основе «КБК» в 2008 году в ЗАО «ЦСН «Огнестойкость-ЦНИИСК» г.Москва проведены сертификационные испытания надколонной (НП 30-30-8, ТУ 5842-001-08911161-2007) и средней (СП 30-30-6, ТУ 5842-001-08911161-2007) железобетонных плит перекрытия (изготовитель плит ФГУП «ДОКСИ при Спецстрое России»).

Испытания надколонной железобетонной плиты проводились под равномерно-распределенной нагрузкой в 700 кг/м2.Обогреваемая поверхность надколонной плиты – сторона плиты с рабочей арматурой предельных состояний не достигла и соответствует пределу огнестойкости не менее REI 180. Для средней железобетонной плиты перекрытия предел огнестойкости составил REI 120.

На основании полученных результатов испытаний, органом сертификации ЗАО «ЦСН «Огнестойкость-ЦНИИСК» г.Москва выданы сертификаты пожарной безопасности для всей номенклатуры панелей перекрытия безригельного каркаса КБК.

В-третьих,с целью подтверждения сейсмостойкости и оценки пригодности системы конструкций безригельного каркаса для строительства в сейсмических районах, с 22 по 29 августа 2008 года по заказу ООО ПЦ «КУБ-Сибирь» в г.Перми были успешно проведеныстатические и динамические испытания фрагментов здания. Испытаниям подверглись два экспериментальных трёхэтажных фрагмента здания из элементов системы «КБК» в натуральную величину с имитацией рабочей нагрузки с целью ее обоснованного применения в строительстве на площадках сейсмичностью до 7-9 баллов по шкале MSK-64. В конструкции первого фрагмента здания в качестве элементов жесткости использовались связи, в конструкции второго – железобетонные диафрагмы.

Конструкции Безригельного Каркаса (КБК)

Испытания проведены Некоммерческой организацией «Российская Ассоциация по сейсмостойкому строительству и защите от природных и техногенных воздействий» (НО РАСС) при участии ОАО «12 Военпроект» (г.Новосибирск), ООО «КБК-Урал» (г.Пермь), ФГУП «ЦПО» при Спецстрое России (г.Воронеж).

По результатам испытаний подтверждена сейсмостойкость каркаса КБК до 9 баллов – при использовании в качестве элементов жесткости железобетонных диафрагм, до 7 баллов – при использовании связей. Российской Ассоциации по Сейсмостойкому Строительству и защите от природных и техногенных воздействий (РАСС) выдано заключение от 06.11.2008:

«Строительная система КБК на основе конструкций Безригельного каркаса РЕКОМЕНДУЕТСЯ к применению при строительстве зданий на площадках сейсмичностью 7-9 баллов по шкале MSK-64 при ограничениях, установленных требованиями таблицы 8* СНиП II -7-81* «Строительство в сейсмических районах» для каркасных зданий».

Вышесказанное позволяет сделать ряд выводов.

1. Соответствие технологии КБК действующему законодательству позволяет применять её без каких-либо ограничений и сложностей в любых регионах нашей страны, в том числе и сейсмоопасных, при этом экспертиза проектной документации в уполномоченных федеральных органах исполнительной власти и органах власти субъектов Российской Федерации проходит без особенностей.

2. Технология КБК предоставляет полную и достоверную прогнозируемость сроков возведения каркаса здания. Так, уже на стадии эскизного проекта, после согласования планировок этажей, застройщик может заключить договор с заводом ЖБИ на изготовление конструктивных элементов каркаса здания, а крайне ограниченное применение монолитного бетона на стройплощадке сводит к минимуму сезонное изменение темпов строительства, либо его приостановку. Всё это позволяет правильно оценить застройщику свои возможности и уложиться в заданные контрактом сроки и стоимость, что особенно актуально при выполнении работ по государственным заказам.

Виды каркаса по характеру работы (рамный, связевой, рамно-связевой)

Рамные системы. Рамные каркасы обычно состоят из прямоугольной сетки горизонтальных балок и вертикальных колонн, соединенных между собой жесткими узлами.

В обычной рамной системе (рис. 4.6, а) колонны регулярно расположены по всему плану здания с шагом 6, 9 м. Жесткие рамы при горизонтальных нагрузках работают за счет изгиба колонн и балок. Горизонтальный прогиб рамного каркаса определяется двумя факторами:

· прогибом от изгиба каркаса как консоли (рис. 4.7, б), при этом удлинение и укорочение колонн приводит к горизонтальным перемещениям, составляющим около 20 % общего прогиба;

· прогибом за счет работы балок и колонн на изгиб (рис. 4.7, в).

На последний вид деформирования приходится около 80 % общего перемещения здания, из которых 65 % из-за изгиба балок и 15 % из-за изгиба

Рис. 4.7. Схемы деформирования каркаса с рамными узлами при действии горизонтальной нагрузки:
а — общая схема деформаций; б — прогиб консоли; в — прогиб за счет работы колонн и балок на изгиб; г — схема деформации ячейки жесткой рамы

колонн. Поэтому подобные системы экономичны в зданиях высотой не более 30 этажей.

Системы с внешней пространственной рамой (см. рис. 4.6, б) обладают повышенной изгибной жесткостью, так как при расположении колонн по контуру увеличивается момент инерции горизонтального сечения каркаса. Система отличается высокой жесткостью на кручение. Кроме того, при частом расположении колонн конструктивные элементы внешней рамы выполняют функции фахверка наружной стены и для ее устройства не требуется дополнительных элементов. При большой ширине здания система может быть дополнена внутренними колоннами, воспринимающими только вертикальные нагрузки от шарнирно примыкающих ригелей перекрытий.

Дальнейшим развитием рамных систем является рамно-секционная система (см. рис. 4.6, в). Благодаря дополнительной жесткости внутренних рам и более равномерному включению граней внешней рамы в работу на изгиб, общая жесткость этой системы по сравнению с предыдущей повышается. Рамно-секционная система позволяет завершать различные секции на разной высоте без существенного усложнения конструкций, придавая зданию ступенчатый объем. Ригели перекрытий в пределах отдельных секций обычно опирают на колонны шарнирно.

Связевые системы. В связевых системах (рис. 4.8) горизонтальная жесткость обеспечивается за счет работы диагональных элементов и колонн при шарнирном примыкании ригелей. Связевая система работает на горизонтальные нагрузки как консоль, защемленная в фундаменте, нагрузки на которую передаются посредством жестких дисков перекрытий.

Рис. 4.8. Схемы основных связевых систем:
а — с диафрагмами жесткости; б — с внутренним решетчатым стволом; в — с внутренним железобетонным стволом; г — с внешним стволом; 1 — диафрагмы; 2 — колонны; 3 — ригели; 4 — внутренний железобетонный ствол; 5 — внешний ствол 6 — наружные диафрагмы

Связевая конструкция может быть решена в виде плоских диафрагм (рис. 4.8, а) или в виде пространственных стволов жесткости (рис. 4.8, б, в, г), которые могут располагаться как внутри здания (рис. 4.8, б, в), так и снаружи, образуя внешний ствол (рис. 4.8, г). Внутренний ствол жесткости может быть решен в виде стальной пространственной решетчатой системы или в виде замкнутой железобетонной конструкции. Такой ствол целесообразно совмещать с лифтовыми или коммуникационными шахтами.

Связевая система отвечает принципу концентрации материала и позволяет проектировать большинство элементов каркаса и их сопряжения более легкими, простой конструктивной формы и в максимальной степени типизировать. По расходу стали связевые системы более эффективны, чем рамные, так как большая часть колонн освобождена от внутренних усилий изгиба.

Рамно-связевые системы (рис. 4.9) имеют вертикальные связи, воспринимающие горизонтальные нагрузки совместно с рамами, расположенными в одной или разных плоскостях со связями. Обратите внимание на несколько иное определение рамно-связевых систем по сравнению с одноэтажными зданиями, что обычно не вносит путаницы и понятно из контекста. Функции обеспечения жесткости распределены в системе между связевой и рамной частями не одинаково, в большинстве случаев связевая часть воспринимает 70. 90 % горизонтальных нагрузок. В качестве примера на рис. 4.10 показан каркас 16-этажного жилого дома [9], выполненного по рамно-связевой схеме. В продольном направлении жесткость обеспечивается за счет рамных узлов примыкания ригелей к колоннам, а в поперечном — за счет связевых диафрагм по торцам здания. Ветровые нагрузки в поперечном направлении передаются через горизонтальные диски перекрытий на торцовые диафрагмы. Жесткость перекрытии

Рис. 4.9. Схемы рамно-связевых систем:
а — рамно-связевые системы с жесткими включениями; б — то же, с поясами жесткости; в — то же, с поясами жесткости и ростверками

Рис. 4.10. Рамно-связевой каркас жилого 16-этажного здания:
а — конструктивная схема продольной и торцовой стен; б — план типового этажа; в — общий вид монтажа каркаса

Рис. 4.11. Примеры сочетаний различных систем по высоте каркаса

в горизонтальной плоскости увеличена постановкой крестовых связей.

При проектировании каркасов многоэтажных зданий не всегда сохраняется регулярность системы и единый принцип ее построения. Это вызвано, как правило, нерегулярностью в объемно-планировочных решениях этажей, что требует смещения осей колонн и ригелей как в плане, так и по высоте. На рис. 4.11 показаны примеры сочетания различных схем по высоте здания. В схемах рис. 4.11, а, б в верхней части каркаса использована менее жесткая рамная система, а в схеме рис. 4.11, в использована идея концентрации усилий от горизонтальных нагрузок в меньшем числе узлов и с более конструктивно простым примыканием ригелей в остальных узлах. Но для обеспечения горизонтальной жесткости каркаса по схеме в в верхнем этаже поставлена вертикальная связь (ростверк), которая способствует более полному включению в работу на горизонтальные нагрузки вертикальных элементов каркаса.

40 Монолитное и сборно-монолитное домостроения

Упрощенно технология возведения конструкций из монолитного бетона выглядит следующим образом: непосредственно на стройплощадке монтируются специальные формы — опалубки, повторяющие контуры будущего конструктивного элемента, например колонны, стены и т.д., в которые устанавливается по проекту каркас из арматуры и заливается бетон. После набора бетоном необходимой прочности получается готовый конструктивный элемент здания. Опалубочные элементы либо демонтируются (при применении сборно-разборных опалубок), либо становятся частью стены (при использовании несъемной опалубки).

Степень трудоемкости этих четырех процессов можно представить таким образом: устройство опалубки — 25-35%, армирование 15-25%, бетонирование и уход за бетоном 20-30%, распалубливание 20-30%.

В настоящее время перспективность данной технологии признана как строителями, так и заказчиками; она эффективна в первую очередь для возведения комбинированных конструктивных систем (с монолитным каркасом и наружными стенами из штучных материалов).

Кроме того, использование монолитного железобетона целесообразно при возведении фундаментов, подземных частей зданий и сооружений, пространственных конструкций, высотных зданий и других конструкций, а также при строительстве в сейсмических районах.

Основные преимущества монолитного домостроения. Прежде всего, это возможность создания свободных планировок с большими пролетами за счет перехода к неразрезным пространственным системам.

Другим преимуществом данной технологии является возможность создания практически любых криволинейных форм, что также расширяет спектр решений при создании уникальных архитектурных образов зданий.

Конструкции, выполненные по монолитной технологии, практически не имеют швов, следствием чего является отсутствие проблем со стыками и с их герметизацией, а также повышение теплотехнических и изоляционных свойств.

Расход стали снижается на 7-20%, а бетона — до 15% по сравнению с конструкциями из сборного железобетона.

При всех достоинствах монолитного домостроения данная технология (впрочем, как и всякая другая) не лишена и некоторых недостатков.

Производственный цикл в данном случае переносится на строительную площадку под открытым небом, а это значит, что дождь, снег, ветер, жара и холод будут создавать дополнительные трудности производству монолитных конструктивных элементов.
Особые сложности возникают при бетонировании в зимних условиях. Главная проблема состоит в замерзании несвязанной воды затворения в начальный период структурообразования бетона.

studopedia.org — Студопедия.Орг — 2014-2022 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

Рамно-связевый каркас стального здания: особенности проектирования и строительства

Каркас — это система, состоящая из нескольких стержней, расположенных в вертикальном положении (колонн), а также горизонтальных балок, называющихся ригелями. Между собой вся конструкция объединена при помощи жестких дисков перекрытий, в том числе системой связующих элементов. Основной особенностью всех каркасных конструкций при планировке основных идей, связанные с расставлением различных колонн, которые имеют более укрупненные расстояния между продольной, а также поперечной направленности конструкций. Эта же конструкция разделяется на несущие и ограждающие виды сооружений.

Типы креплений и соединений

Несущим — называются колонны, ригели, а также диски для перекрывания. Именно данный компонент принимает все необходимые нагрузки. А при построении наружных стен используются ограждающие конструкции, которые предназначены для восприятия только в виде собственной весовой категории. Благодаря этому появляется потребность использовать прочнейшие, в том числе жесткие виды строительных материалов. Частенько используются в качестве несущих каркасных компонентов, и для установления тепло-звукоизоляции. При этом используются лучшие материалы в качестве ограждающих средств. Применение высококачественных материалов позволяет максимально добиться уменьшения общего веса строящегося построения. Именно данное построение положительно сказывается на различных статических конструкционных свойствах будущего здания.

Каркасные конструкции обычно используются в построении общественных, а также жилых построений. В последнее время они популярны при строении многоэтажных домов. В построениях, где использовались полые каркасные сооружения, то в качестве несущего остова идут колонны и ригели. Они же играют главную роль поперечных балок, которые служат в качестве подпорки. Колонны и ригеля между собой крепятся и создают образ рамы, способные нести нагрузку со всех сторон.

Стены, как важная часть конструкции

Основную роль всех ограждающих компонентов исполняют только наружные стены. В этом случае стены любого построения выполняются в виде навесных, но или самонесущих вариантов. Ненесущие варианты некоторых навесных стен, идущих в качестве обычных навесных панелей, крепятся к наружной части каркасной колонны.

Самонесущие варианты стен строятся на готовый фундамент, или же опираются на балки фундамента. Данные стены крепятся к основным каркасным колоннам. В некоторых жилых домах стены обычно делают в виде несущих, а каркасные колонны расположены во внутренней части здания. А ригеля устанавливаются промеж колонн, иногда используют технологию, где они же монтируются между наружными стенами и основными колоннами. Но такая система используется только в ограниченном количестве.

Характерные статические работы

Согласно статической работе все каркасные основания жилого строения распределяется:

  1. Рамные, идущие с жесткими соединяющими компонентами колонн, ригеля. Данный каркас предназначен для соединения вертикальных, а также горизонтальных нагрузок.
  2. Рамно-связевые, это устройства, оснащенные жесткими соединительными деталями в основных узлах колонн совместно с ригелями, расположенных в одной направленности согласно планировке всего здания, а также вертикальными связями, находящихся в параллельном направлении. В данном каркасном сооружении в виде связующих идут стержневые компоненты, возможны и стеновые диафрагмы, необходимые для соединения соседних колонных рядов. Все сторонние нагружения используются в виде рамных каркасных сооружений, а также пилонов вертикального положения расположенных по жестким связующим компонентам.
  3. Связевые, обычно отличимы своей простотой конструкции соединительных частей колонн с ригелью, позволяющее закрепление в виде подвижного типа.
  4. Каркасные конструкции, в том числе колонны и ригеля, могут понести только вертикальные нагрузки. А горизонтальные нагружения, способны передаваться по состоянию жесткости, где очень часто используются ядра жесткости, элементы стержней, а также пилоны вертикального положения.

Компоненты, необходимые для обеспечения жесткости каркасных построений:

  1. стеновая конструкция жесткости;
  2. ригеля;
  3. распорочные панели;
  4. колонны.

Рамные конструктивные системы

Рамные конструктивные системы при построении каркасных сооружений наделены невероятно увеличенной жесткостью, а также устойчивостью. За счет чего образуется максимальная свобода по планировке некоторых строительных идей. Подобная разработка, состоящая из специального железобетонного каркаса совместно со стальными видами, используется при различных условиях.

При разработке рамных каркасов из основного сборного железобетонного материала используется специальный надрез несущих компонентов (обычно рассматриваются Г-, Т-, Н-образные компоненты). Они же позволяют переносить все имеющиеся узловые соединительные элементы в более напряженные части, где обычно идут нулевые сгибающие моменты, зависящие от вертикальных нагружений.

Рамно-связевая

Рамносвязевые систематизации готовы обеспечить жесткость на определенном пространстве, идет все это за счет совмещения поперечных рам, жестких диафрагм вертикального положения, которые непосредственно выполняют основную функциональную работу горизонтальных дисков.

При результате исследовательских работ было доказано, что именно рамносвязевая систематизация может удовлетворить всю обусловленность минимального расходования строительных материалов при строении несущих вертикальных сооружений, и только при нулевой жесткости всех поперечных рам. То есть в данном случае основная система может превратиться в связевой.

Связевая конструкция

Связевые системные конструкции практически все вертикальные нагружения передают на основные стержневые компоненты каркаса, а при горизонтальном строении все усилия воспринимаются в виде жестких вертикальных связевых компонентов. Они же совмещаются при помощи перекрывочных дисков. В указанных каркасных конструкциях полностью ограничены прочность, и даже жесткость всех стыковочных участков между ригелей и колонн.

Конструктивная схема здания

В рамном каркасе основные несущие функции выполняет система колонн и ригелей, расположенных в двух направлениях. Ригели жестко соединены с колоннами и образуют пространственную систему, состоящую из плоских рам.

Рамы 1) воспринимают всю совокупность действующих на здание вертикальных и горизонтальных нагрузок и передают их фундаментам.

Усилия в плоскости дисков перекрытий возникают только при необходимости перераспределения горизонтальных нагрузок между разножесткими рамами. В нормально закомпонованных зданиях усилия невелики и свободно воспринимаются дисками перекрытий.

В монолитных 2) железобетонных конструкциях жесткое соединение ригелей с колоннами дает некую экономию материалов.

Связевый каркас

В связевом каркасе основные несущие конструкции образуются системой колонн, горизонтальных дисков – перекрытий и вертикальных элементов – диафрагм (пилонов).

Роль перекрытий в системе несущих конструкций значительно возрастает. Помимо основной работы на вертикальные нагрузки перекрытия воспринимают действующие на здание горизонтальные силы и передают их диафрагмам, перераспределяют усилия между диафрагмами в зонах изменения их схемы и соотношения жесткостей, участвуют в совместной работе надземной части здания с фундаментами. При больших расстояниях между диафрагмами или между крайними диафрагмами и торцами здания усилия в плоскости перекрытий могут быть довольно большими.

Характерная особенность связевого каркаса – узлы соединения ригелей с колоннами. С точки зрения статической схемы эти узлы могли бы быть шарнирными.

Диафрагмы

Диафрагмы воспринимают часть вертикальных и все горизонтальные нагрузки, действующие на здание, и передают их фундаментам. Обеспечивают общую устойчивость здания, а их жесткость определяет значение перемещений несущих конструкций и здания в целом.

По статической схеме диафрагмы представляются в виде консольных элементов, защемленных в фундаментах. Иногда 3) , чтобы увеличить жесткость и общую устойчивость здания, пилоны объединяют связями в одном или нескольких уровнях по высоте здания. Эти связи выполняют в виде монолитных железобетонных балок или стальных ферм высотой в один этаж. При таком объединении совокупность диафрагм образует пространственную рамную систему.

Смешанный каркас

Смешанной называют схему, основанную на использовании рамных конструкций в одном направлении (обычно поперечном) и передаче горизонтальных нагрузок другого направления на связи. Эта схема распространена в промышленном строительстве (к монолиту не применима).

Рамно-связевый каркас

Рамно-связевая система каркаса основана на сочетании рамных конструкций с диафрагмами.

Опыт проектирования зданий такой системы показывает, что системы диафрагм воспринимают 85-95% горизонтальных нагрузок и при небольшом усилении могут принять на себя все горизонтальные силы.

Применение рамно-связанных систем наиболее целесообразно при использования в несущих конструкциях стали и монолитного железобетона, и как следствие образования жестких узлов без дополнительных затрат труда.

Примечание: Предлагаемый в книге Ханджи метод расчета ориентирован на многоэтажные здания со связевым каркасом. Несмотря на это он может быть использован и при расчете рамно-связевых систем. для этого следует либо в запас прочности не учитывать работу рам и все горизонтальные нагрузки воспринимать пилонами, либо имитировать рамы пилонами эквивалентной жесткости.

Компоновка каркаса здания

Размещение диафрагм

Выбор решения возникающих при этом противоречий (с архитектурными решениями) обусловлен высотой проектируемого здания.

Низкие каркасные здания – высота до 30…40 м

Положение диафрагм может быть подчинено оптимальному архитектурно-планировочному решению. Совокупность диафрагм должна обеспечить прочность, жесткость и общую устойчивость здания, однако схема их размещения может быть произвольной.

Допустимо перемещение диафрагм по высоте с одних осей на другие при обеспечении конструктивных мероприятий по передаче возникающих при этом усилий.

Усложнение конструкции и увеличение расхода материалов, вызванное произвольным размещением диафрагм, в невысоких зданиях полностью окупается улучшением планировки.

Средние каркасные здания – высота 35…75 м

В этой группе зданий следует стремиться к оптимальному размещению диафрагм, однако здесь возможно некоторое небольшое отступление, если это существенно улучшает планировку.

Высокие каркасные здания – высота более 70-80 м (высотные здания)

Положение диафрагм должно соответствовать излагаемым ниже требованиям (правилам) к их размерам и размещению в плане и должно быть оптимальным.

Отступления 4) от этих требований значительно усложняют конструкции и ухудшают их работу. В связи с этим при компоновке высотных зданий первенство должно быть отдано размещению диафрагм, даже если при этом архитектурно-планировочному решению наносится некоторый ущерб.

Правила компоновки системы диафрагм

Система пилонов и архитектурно-планировочное решение здания должны быть максимально взаимоувязаны. В процессе увязки приоритет определяется в зависимости от высоты здания.

При компоновке высоких (более 70-80 м) и средних зданий (35-75 м) по высоте зданий следует стремиться к минимальному числу диафрагм. Необходимая прочность и жесткость здания легче достигается увеличением размера диафрагм, а не их числа. Увеличивать количество пилонов по сравнению с минимально необходимым целесообразно только в зданиях с протяженным планом, когда лимитирующим параметром оказываются расстояния между пилонами.

Минимально необходимой и достаточной для обеспечения геометрической неизменяемости здания (согласно правила прикрепления твердых тел и систем) является система диафрагм, в состав которой входит не менее трех стен, плоскости которых не пересекаются на одной прямой и не параллельны.

Геометрически неизменяемая система

Мгновенно изменяемая системаМгновенно изменяемая система

(могут возникать усилия теоретически бесконечно большие или неопределенные)

Оптимальна такая компоновка здания, при которой центр массы и центр изгиба здания совпадают в плане и через эту же точку проходят равнодействующие ветровых нагрузок. Следует стремиться к тому, чтобы расстояние между центром массы и центром изгиба было минимальным.

Размеры поперечных сечений пилонов, не имеющих развитых фибр, следует назначать не менее 1/6…1/8 высоты надземной части здания.

В зданиях с протяженным планом расстояния между параллельными стенами пилонов следует принимать не более 30 м, расстояние от стены крайнего пилона до крайней оси – не более 12 м. При этом увеличивается количество диафрагм – лимитирующим является параметр расстояния между диафрагмами.

Связевые системы

Инновация компании «Андромета» — гибкая связевая система, которая применяется в конструкциях легких рамно-связевых стальных каркасов. Разработанные для использования в конструктивной системе быстровозводимых зданий СТЕРК®, гибкие связи нашей конструкции могут применяться и для любых других связевых каркасов из стальных холодногнутых, сварных или прокатных профилей. Эти детали устанавливаются в систему с предварительным натяжением и связывают несущие элементы рамно-связевой структуры каркаса – колонны, фермы, систему фахверка, обеспечивая восприятие и передачу ветровых нагрузок и страхуя рамную конструкцию от обрушения. Мы предлагаем Вам поставку гибких связей из оцинкованного прутка 11 из стали марки С 345, окрашенного прутка 22 или других по спецзаказу. В систему входит набор гибких связевых элементов с резьбой и комплект деталей для их натяжения и фиксации – литых чугунных бобышек.

«Андромета» изготавливает на заказ и пользуется в своих рамно-связевых конструкциях каркасов также различными связевыми элементами жесткого типа – из круглой трубы, уголка, полосы и других материалов.

Связевые системы от компании «Андромета»

img

Для обеспечения пространственной устойчивости и геометрической неизменяемости рамно- связевых каркасов необходимо использование связевых систем. Чем большие ветровые нагрузки испытывает рамно-связевая структура, тем более плотную систему связей она должна иметь. Поэтому в конструктивную систему включат один или несколько связевых блоков, которые устраиваются с расчетным шагом вдоль всего здания. Сборка каркаса всегда начинается с организации связевых блоков, к которым затем раскрепляются рядовые рамные поперечники.

img

Функция связей – восприятие и перераспределение на несущие рамные конструкции продольных нагрузок и воздействий, в первую очередь — ветровых. Для того чтобы при ветровом воздействии система связей мгновенно включались в работу, их устанавливают с предварительным натяжением. Усилие натяжения задается проектом и контролируется при монтаже.

img

Для установки и фиксации гибких связей конструкции «Андромета» используются специальные крепежные детали – бобышки. Это цельнолитые чугунные элементы, снабженные отверстиями, через которые протягиваются и крепятся гайками связи, выполненные из прутка с резьбой на обоих концах.

img

По способу своей работы в конструкции связи делятся на жесткие и гибкие, по расположению в каркасной системе – на вертикальные и горизонтальные. Вертикальные связи устанавливают между колоннами здания, горизонтальные – по покрытию.

Наше производство

Завод компании «Андромета» оснащен новейшим высокоточным и высокопроизводительным оборудованием для изготовления строительных систем, деталей и полуфабрикатов из листовой оцинкованной и других конструкционных сталей.

Наш станочный парк позволяет осуществлять следующие основные технологические операции:

Изготовление стальных оцинкованных профилей

  • изготовление стальных оцинкованных профилей (Z, С, сигма, шляпный) высотой до 400 мм и толщиной до 4 мм с автоматической пробивкой отверстий различной формы и размеров в любых заданных местах на стенках и полках профилей
  • изготовление сварной балки и рамных конструкций
  • сварка под флюсом и в газовых средах
  • термическая и механическая резка
  • фрезеровка торцов заготовок сечением до 1,6 х 3,6 м
  • сверление, фрезерование, выполнение фасок
  • продольная и поперечная резка рулонной стали толщиной от 0.4 до 4мм

Наше оборудование позволяет быстро и качественно выполнять заказы строительных, монтажных и других организаций на изготовление рамных конструкций, различных деталей, полуфабрикатов, элементов и систем стального каркаса.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector