Расположение вертикальных связей между колоннами

Расположение вертикальных связей между колоннами

Вертикальные связи по колоннам

Для обеспечения пространственной жесткости и геометрической неизменяемости всего здания в целом, а также для обеспечения устойчивости колонн из плоскости поперечных рам, устанавливают вертикальные связи между колоннами.

Связи по колоннам

Жесткий пространственный брус – геометрически неизменяем и неподвижен в продольном направлении. К нему как бы шарнирно прикреплены все остальные рамы температурного отсека, свободно перемещающиеся в верхней части из своей плоскости

Вертикальные связи между колоннами имеют наиболее существенное значение для создания пространственной жесткости каркаса ОПЗ. Они предназначены для:

– создания продольной жесткости каркаса, необходимой для его нормальной эксплуатации и монтажа;

– обеспечения устойчивости колонн из плоскости поперечных рам;

– передача ветровой нагрузки, действующей на торец здания, и сил продольного торможения мостовых кранов и передачи их на фундаменты.

Связи по колоннам размещают в подкрановой части колонн (связи по нижним частям колонн) и в надкрановой части колонн (связи по верхним частям колонн).

В обеспечении пространственной жесткости каркаса главную роль играют вертикальные связи по нижним частям колонн. Они создают вместе с колоннами, связями по верхним частям колонн, подкрановыми балками и фундаментами так называемый жесткий пространственный брус.

Жесткий пространственный брус – геометрически неизменяем и неподвижен в продольном направлении. К нему как бы шарнирно прикреплены все остальные рамы температурного отсека, свободно перемещающиеся в верхней части из своей плоскости

Связи по колоннам

Для уменьшения расчетной длины колонны из плоскости рамы ставят распорки по высоте колонны.

Вертикальные связи в верхних частях колонн обладают небольшой жесткостью и незначительно препятствуют температурным деформациям каркаса. Поэтому вертикальные связи в верхних частях колонн размещают у торцов здания, у температурных швов и в средней части здания или температурного отсека, там, где располагают связи по нижним частям колонн.

Вертикальные связи в верхних частях колонн предназначены:

– для обеспечения удобства монтажа сооружения, который обычно начинается с краёв. Первая и вторая рамы и связи между ними образуют устойчивый элемент, к которому как бы прикрепляют остальные рамы;

– для восприятия ветровой нагрузки, действующей на торец здания. Благодаря этим связям нагрузка передается на подкрановые балки, затем на нижние связи между колоннами и далее на фундамент;

– для создания вместе со связями по нижним частям колонн жесткого пространственного бруса.

Металл обладает высокой теплопроводностью и имеет высокий коэффициент линейного расширения.

Деформации в результате перепада температур (зима-лето) равны

В продольных элементах каркаса эта величина значительна.

Для обеспечения свободы развития температурных деформаций продольных элементов каркаса (подкрановых балок, прогонов, распорок) жесткий пространственный брус ставят в середине здания или температурного блока.

Рис. 2 Размещение вертикальных связей по колоннам:

в) правильное расположение связей;

Если жесткие связевые брусья будут поставлены по краям блока (рис.2,б), то при перепаде температур (лето-зима) будет происходить стесненное развитие температурных деформаций продольных элементов каркаса. Стеснённые температурные деформации вызовут дополнительные напряжения в продольных элементах каркаса, которые должны быть учтены в расчетах.

Если пространственный брус установить только с одного края здания или температурного блока (рис.2,в), то горизонтальное перемещение торцевой колонны на противоположном конце здания будет очень велико и может привести к повреждениям узлов сопряжения элементов.

Расстояние от торца здания до оси ближайшей вертикальной связи (жесткого диска), а также между осями вертикальных связей в одном температурном отсеке, не должно превышать величин, указанных в табл. 42 СНиП [1]. Расстояние от торца здания до связевого блока не должно превышать 60 — 90 м.

Связи между колоннами

Элементы каркаса, соединяющие между собой поперечные рамы, называют связями. Они воспринимают различные нагрузки, обеспечивая пространственную жесткость каркаса.

По характеру расположения связи бывают горизонтальные, установленные в плоскости ферм, и вертикальные, установленные между колоннами или фермами в вертикальной плоскости.

Вертикальные связи между колоннами продольных рядов устанавливают в середине температурного блока в каждом ряду. За температурный блок принимается длина здания 60 м, 72 м, 84 м. При шаге колонн 6 м ставят крестовые связи, при шаге 12 м – портальные.

В зданиях без мостовых кранов или с подвесными кранами связи ставят, когда высота помещения больше 10,8 м.

В зданиях с мостовыми кранами связи устанавливаются в подкрановой части начиная с высоты здания 8,4 м, а для зданий высотой 12 м; 13,2 м; 14,4 м предусматриваются и в надкрановой части здания.

Горизонтальные крестовые связи в уровне нижнего пояса балок или ферм устанавливают в зданиях с мостовыми кранами во втором шаге в начале здания и в предпоследнем шаге в конце здания.

Роль горизонтальных связей также выполняют плиты покрытия, подстропильные фермы или балки, подкрановые и обвязочные балки, стеновые панели.

Связи выполняют из стальных прокатных парных уголков или швеллеров и приваривают к закладным деталям колонн.

Тип связей и их конструкция предусматривается серией 1.424.1-5

Крестообразная 6 м связь весит ≈ 600-800 кг,

Портальная 6 м связь ≈ 100-1500 кг.

Стальной каркас

1. Основные типы колонн, опираемые на фундамент.

2. Стальные подкрановые балки.

3. Главные элементы покрытия из стали.

4. Детали и узлы стального каркаса

— соединение подкрановой балки с консолями и между собой

— крепление подкранового рельса с подкрановой балкой.

— соединение главных элементов покрытия с колоннами

Стальной каркас одноэтажного промышленного здания состоит из тех же конструктивных элементов, что и сборный ж/б каркас.

Стальные каркасы применяются в зданиях с повышенной этажностью, при укрупненной сетке колонн, а также при мостовых кранах большой грузоподъемности. Применение стального каркаса должно быть экономически обосновано.

Отсеки стальных каркасов по длине через 230 и 200 м и при ширине соответственно через 150 и 120 м разделяют деформационными швами.

Стальные каркасы допускаются в следующих случаях:

— при высоте одноэтажных зданий более 14,4 м;

— при грузоподъемности кранов 50 т и более;

— при пролетах здания 30 м и более.

Стальные колонны по конструкции бывают сплошные и сквозные.

Поперечное сечение сплошных колонн состоит из прокатных профилей (металлических уголков, швеллеров, двутавров, двутавра и швеллера) или листов, сваренных между собой по высоте. Сквозные колонны состоят из двух отдельных ветвей выполненных из сварных двутавров, соединенных планками или решетками, а надкрановая часть колонны выполняется из двутавра.

Колонны постоянного сечения устанавливают в бескрановых зданиях или в зданиях с мостовыми кранами высотой 8,4 и 9,6 м.

Колонны сквозного сечения устанавливают в зданиях с высотой этажа 10,8 – 18 м, с мостовыми кранами грузоподъемностью до 125 т.

При выполнении стального каркаса фундаменты под колонны устраиваются, как и при сборном ж/б каркасе из монолитного ж/б с некоторыми изменениями.

В нижней части колонны имеются башмаки – конструктивный элемент крепления колонны к фундаменту. Основная часть каждого башмака – стальная плита (опорный лист) толщиной 30-60 мм, которая может быть усилена ребрами, приваренными к опорной плите и стволу колонны. На нее опирается ветвь колонны, башмак крепят к фундаменту анкерными болтами. Опирание башмака осуществляется через слой цементно-песчаного раствора.

Для связи башмака с фундаментом в нем, во время бетонирования устанавливаются деревянные пробки пирамидальной формы с большим основанием вверху. Деревянные пробки оборачиваются с наружной стороны толью или рубероидом, чтобы после бетонирования и схватывания бетона пробка легко вынималась.

Глубина заложения пробки вычисляется расчетом. В фундаменте образуются отверстия, в которые устанавливаются анкера (стержни). Нижний конец должен быть с крюком. После тщательной выверки (проверки) расстояний между осями стержней, отверстия бетонируются. Количество устанавливаемых стержней, их диаметр и длина – величины расчетные. Через эти болты происходит соединение башмака с фундаментом. Соединение выполняется двумя гайками и шайбой.

Подкрановые балки выполняются в виде сварных двутавров со стенками, укрепленными ребрами жесткости для шага колонн 6 и 12 м. Балки предусматриваются высотой 700, 900,1050 мм для шага колонн 6 м и 1100, 1300, 1450 мм для шага колонн 12 м.

Между собой подкрановые балки соединяются при помощи болтов.

С консолью колонны подкрановые балки соединяются также при помощи болтов через опорную пластину.

Крепление рельса к стальным подкрановым балкам осуществляется при помощи прижимных лапок (как и при ж/б подкрановых балках), а также при помощи крюков.

Вид крепления зависит от режима работы мостового крана. По режиму работы мостовые краны делятся на легкие, средние и тяжелого режима. Чем больше во времени работает кран (2,3 смены), тем выше режим работы.

Крюками рельсы крепятся к металлическим подкрановым балкам при среднем и тяжелом режиме работы, а при легком режиме работы – при помощи прижимных лапок.

В качестве главных элементов покрытия в стальных каркасах применяются стальные стропильные и подстропильные фермы с различным профилем: треугольные, прямоугольные.

Пояса и решетку стропильных и подстропильных ферм выполняют из парных уголков или труб и соединяют между собой сваркой при помощи фасонок из листовой стали. Стропильные конструкции крепят к колоннам при помощи анкерных болтов.

Соединение главных элементов покрытия с колоннами каркаса.

Связи, установленные между стропильными фермами и колоннами обеспечивают пространственную жесткость стального каркаса.

В уровне верхнего пояса ферм закрепляют горизонтальные крестовые связи и распорки.

В уровне нижнего пояса ферм закрепляют поперечные и продольные связевые фермы и ставят растяжки из уголков.

Между стропильными фермами закрепляют вертикальные крестовые связи или фермочки с параллельными поясами.

Вертикальные связи между колоннами устанавливают в каждом продольном ряду колонн (в средине температурного блока).

Вертикальные связи в надкрановой части колонн располагают в местах расположения вертикальных связей между фермами покрытия.

Все типы связей выполняются из прокатных профилей металла и закрепляют болтами или сваркой к элементам каркаса.

Связь между колоннами. Связи по покрытию. Фахверк и конструкции за-полнения проемов. Постоянные нагрузки. Временные нагрузки. Учет про-странственной работы каркаса

Система связей между колоннами обеспечивает во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам.

Связи, образующие жесткий диск, располагают посередине здания или температурного отсека, учитывая возможность перемещения колонн при температурных деформациях продольных элементов.

Если поставить связи (жесткие диски) по торцам здания, то во всех продольных элементах (подкрановые конструкции, подстропильные фермы, распорки связей) возникают большие температурные усилия Ft

При длине здания или температурного блока более 120м между колоннами обычно ставят две системы связевых блоков.

Предельные размеры между вертикальными связями в метрах

Характеристика зданияОт торца блока до оси ближайшей вертикальной связи.Между осями вертикальных связей в одном блоке
Отапливаемое90 (60)60(50)
Неотапливаемое или горячие цехи75 (50)50(40)

Размеры в скобках даны для зданий, эксплуатируемых при расчетных температурах наружного воздуха t= –40° ¸ –65 °С.

Наиболее простая схема связей крестовая, она применяется при шаге колонн до 12 м. Рациональный угол наклона связей , поэтому при небольшом шаге, но большой высоте колонн устанавливают две крестовые связи по высоте нижней части колонны.

В таких же случаях иногда проектируют дополнительную развязку колонн из плоскости рамы распорками.

Вертикальные связи ставят по всем рядам здания. При большом шаге колонн средних рядов, а также чтобы не мешать передаче продукции из пролета в пролет проектируют связи портальной и полупортальной схем.

Вертикальные связи между колоннами воспринимают усилия от ветра W1,и W2 действующего на торец здания и продольного торможения кранов Тпр.

Элементы крестовых и портальных связей работают на растяжение. Сжатые стержни вследствие большой гибкости выключаются из работы и в расчете их не учитывают. Гибкость растянутых элементов связей, расположенных ниже уровня подкрановых балок не должна превышать 300 для обычных зданий и 200 для зданий с «особым» режимом работы кранов; для связей выше подкрановых балок – соответственно 400 и 300.

Связи по покрытию.

Связи по конструкциям покрытия (шатра) или связи между фермами создают общую пространственную жесткость каркаса и обеспечивают: устойчивость сжатых поясов ферм из их плоскости, перераспределение местных крановых нагрузок, приложенных к одной из рам, на соседние рамы; удобство монтажа; заданную геометрию каркаса; восприятие и передачу на колонны некоторых нагрузок.

Связи по покрытию располагают:

1) в плоскости верхних поясов стропильных ферм – продольные элементы между ними;

2) в плоскости нижних поясов стропильных ферм – поперечные и продольные связевые фермы, а также иногда и продольные растяжки между поперечными связевыми фермами;

3) вертикальные связи между стропильными фермами;

4) связи по фонарям.

Связи в плоскости верхних поясов ферм.

Элементы верхнего пояса стропильных ферм сжаты, поэтому необходимо обеспечить их устойчивость из плоскости ферм.

Ж/б плиты покрытия и прогоны могут рассматриваться как опоры, препятствующие смещению верхних узлов из плоскости фермы при условии, что они закреплены от продольных перемещений связями, расположенными в плоскости кровли. Такие связи (поперечные связевые фермы) целесообразно располагать в торцах цеха, чтобы они вместе с поперечными связевыми фермами по нижним поясам и вертикальными связями между фермами создавали пространственный блок, обеспечивающий жесткость покрытия.

При большей длине здания или температурного блока устанавливают промежуточные поперечные связевые фермы, расстояние между которыми не должно превышать 60 м.

Для обеспечения устойчивости верхнего пояса фермы из ее плоскости в пределах фонаря, где нет кровельного настила, предусматриваются специальные распорки, в коньковом узле фермы обязательны. В процессе монтажа (до установки плит покрытия или прогонов) гибкость верхнего пояса из плоскости фермы должна быть не более 220. Поэтому, если коньковая распорка не обеспечивает этого условия, между ней и распоркой на опоре фермы (в плоскости колонн) ставят дополнительную распорку.

Связи в плоскости нижних поясов ферм

В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса как поперек, так и вдоль здания.

При работе мостовых кранов возникают усилия, вызывающие поперечные и продольные деформации каркаса цеха.

Если поперечная жесткость каркаса недостаточна, краны при движении могут заклиниваться и нарушается нормальная эксплуатация. Чрезмерные колебания каркаса создают неблагоприятные условия для работы кранов и сохранности ограждающих конструкций. Поэтому в однопролетных зданиях большой высоты (H>18 м), в зданиях с мостовыми кранами Q>100 кН, с кранами тяжелого и весьма тяжелого режимов работы при любой грузоподъемности обязательна система связей по нижним поясам ферм.

Горизонтальные силы F от мостовых кранов воздействуют в поперечном направлении на одну плоскую раму или две-три смежные.

Продольные связевые фермы обеспечивают совместную работу системы плоских рам, вследствие чего поперечные деформации каркаса от действия сосредоточенной силы значительно уменьшаются.

Стойки торцевого фахверка передают ветровую нагрузку Fвт в узлы поперечной связевой фермы.

Чтобы избежать вибрации нижнего пояса фермы вследствие динамического воздействия мостовых кранов ограничивается гибкость растянутой части нижнего пояса из плоскости рамы: при кранах с числом циклов нагружения 2×10 6 и более – величиной 250, для прочих зданий – величиной 400. Для сокращения длины растянутой части нижнего пояса в некоторых случаях ставят растяжки, закрепляющие нижний пояс в боковом направлении.

Вертикальные связи между фермами.

Эти связи связывают между собой стропильные фермы и препятствуют их опрокидыванию. Они устанавливаются, как правило, в осях, где установлены связи по нижним и верхним поясам ферм образуя совместно с ними жесткий блок.

В зданиях с подвесным транспортом вертикальные связи способствуют перераспределению между фермами крановой нагрузки приложенной непосредственно к конструкциям покрытия. В этих случаях, а также к стропильным фермам крепят электрические кран – балки значительной грузоподъемности, вертикальные связи между фермами располагают в плоскостях подвески непрерывно по всей длине здания.

Конструктивная схема связей зависит главным образом от шага стропильных ферм.

Связи по верхним поясам стропильных ферм

Связи по нижним поясам стропильных ферм

Для горизонтальных связей при шаге ферм 6м может быть применена крестовая решетка, раскосы которой работают только на растяжение (рис а).

В последнее время в основном применяются связевые фермы с треугольной решеткой (рис б). Здесь раскосы работают как на растяжение, так и на сжатие, поэтому их целесообразно проектировать из труб или гнутых профилей, позволяющих снизить расход металла на 30-40 %.

При шаге стропильных ферм 12 м диагональные элементы связей даже работающие только на растяжение, получаются слишком тяжелыми. Поэтому систему связей проектируют так, чтобы наиболее длинный элемент был не более 12 м, и этим элементом поддерживают диагонали (рис в, г).

Обеспечить крепление продольных связей можно и без решетки связей по верхнему поясу ферм, которая не дает возможности использовать сквозные прогоны. В этом случае в жесткий блок входят элементы покрытия (прогоны, панели), стропильные фермы и часто расположенные вертикальные связи (рис д). Такое решение является в настоящее время типовым. Элементы связи шатра ( покрытия) рассчитываются, как правило, по гибкости. Предельная гибкость для сжатых элементов этих связей – 200, для растянутых – 400, (при кранах с числом циклов 2×10 6 и более – 300).

Система конструктивных элементов, служащих для поддержания стенового ограждения и восприятия ветровой нагрузки называется фахверком.

Фахверк устраивается для нагруженных стен, а также для внутренних стен и перегородок.

При самонесущих стенах, а также при панельных стенах с длинами панелей, равными шагу колонн, необходимости в конструкциях фахверка нет.

При шаге наружных колонн 12 м и стеновых панелях длиной 6м устанавливаются промежуточные фахверковые стойки.

Фахверк, устанавливаемый в плоскости продольных стен здания, называется продольным фахверком. Фахверк, устанавливаемый в плоскости стен торца здания, называется торцевым фахверком.

Торцовый фахверк состоит из вертикальных стоек, которые устанавливаются через 6 или 12 м. Верхние концы стоек в горизонтальном направлении опирают на поперечную связевую ферму в уровне нижних поясов стропильных ферм.

Чтобы не препятствовать прогибу стропильных ферм от временных нагрузок, опирание стоек фахверка осуществляется с помощью листовых шарниров, представляющих собой тонкий лист t=(8 10мм) шириной 150 200мм, который в вертикальном направлении легко изгибается, не препятствуя прогибу фермы; в горизонтальном направлении он передает усилие. К стойкам фахверка крепят ригели для оконных проемов; при большой высоте стоек в плоскости торцевой стены ставят распорки, уменьшающие их свободную длину.

Стены из кирпича или бетонных блоков устраивают самонесущими, т.е. воспринимающими весь свой вес, и только боковая нагрузка от ветра передается стеной на колонну или стойку фахверка.

Стены из крупнопанельных ж/б плит устанавливаются (навешиваются) на столики колонн или фахверковых стоек (один столик через 3 – 5 плит по высоте). В этом случае фахверковая стойка работает на внецентренное сжатие.

Вертикальные связи между колоннами. А можно ли «выключать» сжатую ветвь?

В самом начале своей трудовой деятельности у меня не было ни опытных наставников, ни друзей и знакомых, трудящихся в крупных проектных конторах, которые смогли бы мне разжевать возникающие у меня вопросы по металлическим конструкциям. Так как я до сих пор считаю себя начинающим инженером, то не претендую на то, что моя запись будет авторитетным источником. Я готов внести правки в свою статью по итогам обсуждения.

На написание статьи меня сподвигло то, что я не смог в свое время найти подробное пошаговое описание СНиПовской методики подбора связей, а то, что изложено в самом СНиПе, мне было не понятно.

Итак, имеем связевую панель между колоннами, шаг колонн 6 м, высота колонн 8 м, крана нет. Задача: подобрать сечение элементов крестовой связи и выбрать узел пересечения ветвей связи.

В подавляющем большинстве «сарайчиков» сечения вертикальных связей между колоннами достаточно подобрать по критерию не превышения предельной гибкости.

п. 15.4.12 СП 16 нам говорит:

При применении крестовой решетки связей покрытий, за исключением
зданий и сооружений I уровня ответственности, допускается расчет по условной схеме
в предположении, что раскосы воспринимают только растягивающие усилия.

Что как бы намекает: «В вертикальных связях между колоннами так не делайте (сжатую ветвь из расчета не выключайте), потому что про вертикальные связи между колоннами ничего подобного не написано»

Намек понятен, поэтому мы переходим к п. 10.4.1. СП 16, в котором говорится, что гибкость сжатых элементов (в нашем случае одна из ветвей всегда будет сжата) не должна превышать предельных значений, приведенных в таблице 32. А растянутых (одна из ветвей всегда будет растянута) — в таблице 33. Так как горизонтальная нагрузка может быть приложена к связевому блоку как с одной стороны, так и с другой, обе наши ветви связи могут оказаться сжаты, поэтому пока что мы будем пользоваться только таблицей 32, а именно п. 6 этой таблицы, в котором говорится, что предельная гибкость элементов вертикальных связей между колоннами λu=200.

Как известно, фактическая гибкость элемента «λ» прямо пропорциональна расчетной длине элемента «Lef» и обратно пропорциональна радиусу инерции поперечного сечения элемента «i». λ = Lef / i

Для начала разберемся с расчетной длиной, для этого переходим к п. 10.1.1 и смотрим рисунок 13 д) — чем не наша схема, упавшая набок?

Далее переходим к п. 10.1.3, в котором приведена интересующая нас табличка. Попробуем ее подробно разобрать.

В качестве исходных данных для наших вертикальных связей между колоннами, зададимся сечением из замкнутой прямоугольной трубы.

1. Итак, первая строчка первый столбец — оба элемета не прерываются. Такой случай возможен при использовании в качестве элементов связей уголков или швеллеров, что как бы не наш случай, но мы его все равно рассмотрим. Lef = l = l1 = 10000 / 2 = 5000 (мм). Расчетная длина рассматриваемой сжатой ветви равна расстоянию от точки крепления к колонне до точки пересечения с поддерживающим растянутым элементом.

2. Вторая строчка первый столбец. Рассматриваемый сжатый элемент не прерывается, поддерживающий элемент растянут и прерывается. Этот случай вполне нам подходит. Lef = 0,7 * l1 = 0,7 * 10000 = 7000 (мм). Поддерживающий растянутый элемент не так «хорош», как в п.1. но все же хорош, поэтому сокращает расчетную длину рассматриваемого элемента по сравнению с геометрической длиной на 30%.

3. Третья строчка первый столбец. Из-за того, что поддерживающий элемент растянут, сжатый даже не заметил, что прервался в точке пересечения раскосов. Расчетная длина такая же, как и в п. 2.

4. Первая строчка второй столбец. Такая ситуация возможна, например, при удалении из схемы распорки по верху колонн. Поддерживающий элемент на 30% уменьшает расчетную длину рассматриваемого сжатого элемента.

5. Вторая строчка второй столбец. Рассматриваемый сжатый элемент поддерживается неработающим прерывающимся элементом. В этом случае поддерживающий элемент ничего и не поддерживает (никак не влияет на рассматриваемый), поэтому расчетная длина рассматриваемого сжатого элемента равна геометрической длине между точками крепления к колоннам.

6. Третья строчка второй столбец. Сжатый рассматриваемый элемент прерывается, а поддерживающий и не думал его поддерживать — получаем механизм. Таблица 25 авторитетно говорит нам, что так делать не надо.

7. Первая строчка третий столбец. Такой случай возможен при обжатии вертикальных связей между колоннами. Обжатие возникает при использовании в узле прикрепления связей к колонне сварки или болтов класса точности А. Также, такая ситуация соответствует случаю, когда обжатие не учитывается — рассматриваемый элемент растянут, а поддерживающий сжат (элементы поменялись местами по сравнению с п. 1). Здесь поддерживающий элемент хоть и сжат, но не мешает работе рассматриваемого элемента. По сравнению с п. 1. расчетная длина увеличится в 2 раза, но и предельная гибкость для растянутых элементов вертикальных связей между колоннами в соответствии с таблицей 33 СП 16 λu = 400 (увеличилась в 2 раза).

8. Вторая строчка третий столбец. Такая ситуация возможна в тех же случаях, что и в п.7. Но здесь уже поддерживающая прерывающаяся ветвь связи ухудшает работу рассматриваемого элемента. Обжатие в наших «сарайчиках» мы не учитываем, поэтому расчетная длина рассматриваемого растянутого элемента Lef = 10000 * 1,4 = 14000 (в 2 раза больше, чем в п 2.). Предельная гибкость, также как и в п. 7. в 2 раза больше λu = 400.

9. Третья строчка третий столбец. Таблица 25, как и в п.6, не желает давать разъяснения для данного случая.

Для наших исходных данных подходят 2 случая — п. 2 и п. 8, потому что трубы тяжело пересечь и соединить их между собой в точке пересечения, при этом не прервав ни одну из них, а прерывать обе мы стесняемся.

По п. 2 Lef = 7000 (мм), λu = 200 (рассматриваемый элемент сжат), λ = Lef / i, примем λ = λu и выразим отсюда радиус инерции (требуемый радиус инерции, который будет обеспечивать гибкость не выше предельной)

i = Lef / λ = 7000 / 200 = 35 (мм)

по п. 8 Lef = 14000 (мм), λu = 400 (рассматриваемый элемент растянут)

i= Lef / λ = 14000 / 400 = 35(мм)

А теперь давайте вернемся к нашей исходной схеме и попробуем просто выключить сжатую ветвь из расчета, просто предположим, что работает только растянутая ветвь связи.

i = Lef / λ = 10000 / 400 = 25 (мм)

Вывод: при подборе сечения ветвей крестовых вертикальных связей между колоннами, при определенных обстоятельствах, нет разницы рассматриваете ли Вы сжатый элемент или растянутый — результат будет тот же. В то же время, не стоит подбирать сечения элементов вертикальных связей в предположении, что сжатая ветвь «выключается».

Спасибо за внимание. Бумага всё стерпит (» Epistola поп erubescit» — Цицерон)

Выбор схемы связей между колоннами

Система связей между колоннами обеспечивает геометрическую неизменяемость каркаса и его несущую способность в продольном направлении. Ввиду небольшой длины здания, согласно требованиям, необходимо установить вертикальную связь в одной панели в середине здания. При этом выдерживаются требуемые по табл.11.2 [1] предельные размеры между вертикальными связями.

Связи назначаем крестовые. Помимо этого крайние колонны по торцам здания соединяем двумя гибкими связями.

Расположение связей показано на рис.2.

Разработка схемы связей по шатру

Связи между фермами обеспечивают устойчивость сжатых элементов ригеля, перераспределение местных нагрузок. В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса поперек и вдоль здания. Поэтому необходима установка системы связей по верхнему и по нижнему поясу ферм ( мостовые краны по заданию имеют большую 10 т грузоподъемность).

Для обеспечения жесткости нужно использовать вертикальные связи в виде ферм, которые устанавливаются между фермами по их торцам.

Рис. Вертикальная связь

Схема системы связей показана на рис.4

Разработка схемы фахверка

Фахверком называют систему конструктивных элементов, служащих для поддержания стенового ограждения и восприятия ветровой нагрузки. Между колоннами здания устанавливаются стойки, на которые монтируют ригели. К ригелям крепятся стеновые панели.

Схема фахверка показана на рис.5

Компоновка рамы цеха

Вертикальные габариты здания зависят от технических условий производства и определяются расстояниями от уровня ноль до головки подкранового рельса и расстоянием от головки подкранового рельса до низа несущих конструкций покрытия.

Расстояние от уровня пола до головки подкранового рельса H1:

где hк – расстояние от головки подкранового рельса до верхней точки тележки крана, hк =2750 мм (для 30 т Кудишин прил.№1), hк =3700 мм (для 80 т); f – прогиб конструкции ферм, f = 200 мм (для пролета 24 м).

Для расчета принимаем hк =3700 мм для большей типизации элементов пролетов.

Полученное значение необходимо округлить до 0.2 м. Принимаем H1 = 4.0 м.

Высота цеха от уровня пола до стропильных ферм:

  1. РАССЧИТАЙТЕ И ВЫЧЕРТИТЕ НА ЛИСТЕ РАМУ СО СВОИМИ ПАРАМЕТРАМИ ИЗ ЗАДАНИЯ– ОГПР, Н1,Н2,Н0Н,НВ

Рис.5 Компоновка рамы цеха.

Значение H0 > 10.8 м, поэтому оно должно быть кратно 1.8 м. Принимаем H0 = 19.8 м, H1 = 15.8 м.

Высота верхней части колонны:

где hпб – высота подкрановой балки, ; hp – высота рельса, hp = 0.15 м.

Принимаем Hв = 6 м.

Высота нижней части колонны:

Привязку колонн принимаем 250 мм.

hф = 2250 мм (для пролета 24 м).

  1. ВЫЧЕРТИТЕ УЗЕЛ СО ВСЕМИ РАЗМЕРАМИ – ПРИВЯЗКОЙ, ВЫСОТАМИ СЕЧЕНИЙ ….

Рис.6 Узел опирания мостового крана на колонну

Ширина верхней части колонны bв = 500 мм. При назначении ширины нижней части необходимо предусмотреть проход для ремонта и обслуживания подкрановых путей.

где hпр – ширина прохода, hпр = 450 мм (с учетом устройства ограждения).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector