Расположение четвертей на координатной плоскости

Расположение четвертей на координатной плоскости

Координатные четверти

Человечество с самого начала своего существования нуждалось в определении своего места положения. Как узнать конкретное расположение точки с точностью до миллиметра? Только с помощью системы координат, об особенностях которой и пойдет речь сегодня.

Что такое система координат?

Система координат это комплекс мер, которые позволяют определить положение точки в пространстве или на плоскости.

В физике помимо комплекса определения положения точки используется еще и прибор для определения времени. В математике достаточно определить положение точки в один момент времени.

Существует две разновидности систем координат:

  • Прямоугольная система координат. Это система координат, которая была изобретена английским математиком Декартом, потому второе название системы координат: декартова. Система представляет собой два взаимно перпендикулярных луча. Началом отсчета является точка пересечения лучей, на лучах отмечают единичные отрезки.
  • Полярная система координат. Эта система куда более древняя. Она использовалась еще мореплавателями в древней Греции. В качестве координат используется еще и угол. Число откладывается на луче, от точки поднимается перпендикуляр. После из начала координат проводится прямая под заданным углом. Точка пересечения проведенной прямой и перпендикуляра и есть искомое положение точки.

Полярная система в современности используется крайне редко, она сложнее декартовой системы, а потому утратила свою популярность.

Координатные четверти

Два взаимно перпендикулярных луча образуют четыре координатные четверти. Горизонтальная ось называется осью абсцисс или осью Ох, вертикальная оси называется осью ординат или осью Оу. Начало координат рассекает оси на положительную и отрицательную часть.

Каждая из координатных четвертей имеет свой номер и обозначение в виде римской цифры. Сначала нумеруют верхние четверти, так верхняя правая четверть зовется первой, верхняя левая второй, нижняя левая третье, а нижняя правая четвертой.

Для того, чтобы узнать координаты точки в прямоугольной системе координат, следует опустить от точки перпендикуляры на оси и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты прописываются в скобочках, первой идет координата по оси Ох, второй по Оу.

Разберемся, какие координаты могут быть в осях:

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательна, а координата у положительна, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительна, а координата у отрицательна, то точка лежит в четвертой четверти.

Что мы узнали?

Мы поговорили о системах координат. Выделили две системы координат. Поговорили о координатных четвертях, а также сказали, как определить расположение точки в зависимости от ее координат.

«Координатная плоскость»

Ребята, тема нашего урока: «Координатная плоскость». Цель урока – исследовать координатную плоскость.

Закрепить, углубить и обобщить Ваши знания по данной теме.

II. Устная работа

2. Известно, что х и у – положительные числа, а n и m – отрицательные.

3. Достройте отрезок АВ до квадрата АВСD и найдите координаты его вершин т. е. точек А, В, С, D. (Два решения)

III. Исследование координатной плоскости

Класс разбит на 6 групп. У каждого есть свой зачетный лист. В течение урока дети сами оценивают значками:

  • «+» — отв. Устно верно
  • «±» — в основном верно
  • «-» — выдвигал гипотезу но она не верна

1) Вступительное слово учителя.

Все мы очень индивидуальны. И по складу характера и по внешности. Но когда художник портретист начинает свою работу и делает первые наброски, то я думаю, что все начинается с каких-то общих закономерностей – с овала лица, места расположения глаз, носа, рта и т. д. Ведь это нас с вами всех объединяет. А уж потом какие-то своеобразные штрихи.

Мы сегодня тоже попробуем как бы «нарисовать портрет», но портрет не человека, а координатной плоскости!

  1. Дайте определение координатной плоскости? (Плоскость, на которой выбрана прямоугольная система координат, называется координатной плоскостью)
  1. А что называется прямоугольной системой координат? (Это ось абсцисс и ось ординат)

— Значит, наш портрет начинаем рисовать с осей (абсцисс и ординат) координат.

Оси координат разбивают плоскость, на четыре части, которые наз-ся координатными четвертями. Вам нужно запомнить эти четверти.

2) Работа по группам с карточками.

Итак, для того чтобы продолжить рисовать наш портрет каждая группа выполнит сейчас карточки-задания.

Выполнять их вы должны в тетрадях!

Когда карточки будут выполнены всеми.

Представляем слово каждой группе

При этом выбираете одного выступающего от своей группы (это не обязательно консультант), он у доски будет объяснять, как вы сделали карточку и ваш вывод.

  1. Запишите координаты точек обозначенных буквами где расположены эти точки?
  2. Сравните абсциссы и ординаты этих точек:
    а) по величине
    б) по знаку
  3. Сделайте вывод.

4) Обсуждение и выступление учеников (Создание общего поля исследования)

Гр. I Точки А(2;4); В(5;8); D(4;1); С(7;2); Расположены в I координатной четверти. Абсциссы и ординаты этих точек различны, но их объединяет то, что они положительны.

Вывод: «Знаки координат в I-й четверти положительны»

На портрете рисуют в первой четверти (+;+).

Гр. II Точки М(-2;6); Р(-3;1); N(-6;3); К(-7;6); расположены во II координатной четверти. Абсциссы и ординаты этих точек различны, но их объединяет то, что абсцисса — отрицательное число, а ордината – положительное число.

Вывод: знаки координат во II-й четверти такие: х-положительное, у-отрицательное.

На портрете рисуют в III четверти (-;+).

Гр. III Точки Е (-2;-2), S (-5;-3), R (-7;-2), F (-3;-6). Расположены в III координатной четверти. Абсциссы и ординаты этих точек различны, но их объединяет то, что абсцисса — отрицательное число, а ордината – отрицательное число.

Вывод: знаки координат во III-й четверти такие: х- отрицательное, у-отрицательное.

На портрете рисуют в III четверти (-;-).

Гр. IV Точки L( 2;-3), H( 4;-5), G( 6;-2), Q( 8;-6). Расположены в IV координатной четверти. Абсциссы и ординаты этих точек различны, но их объединяет то, что абсцисса — положительное число, а ордината – отрицательное число.

На портрете рисуют в IV четверти (+;-).

Гр. V Точки A( 0;5), B( 0;2), C( 0;-3), D( 0;-6). Расположены на оси у. Абсциссы этих точек равны 0, а ординаты различны.

Вывод: Если точка лежит на оси ординат, то абсцисса этой точки равна нулю.

На портрете рисуют, на оси у – (0;у)

Гр. VI Точки S (0;5), M (0;2), N (0;-3), P (0;-6). Лежат на оси х. Абсциссы этих точек различны, а ординаты равны 0.

Вывод: Если точка лежит на оси абсцисс, то ордината этой точки равна нулю.

На портрете рисуют, на оси х – (х;0)

Нравится вам портрет координатной плоскости?

Что бы вы добавили к этому портрету?

(Можно, например, указать как находится координата точки).

Вывешиваю плакат с «портретом координатной плоскости».

В математике такой портрет можно назвать опорным конспектом.

IV. фронтальная работа по опорному конспекту.

V. Творческая работа по группам

Задание: В координатной плоскости построить следующие точки, соединяющие их последовательно с предыдущей точкой отрезком. Получите определенный рисунок.

VI. Разноуровневые задания в карточках на 4 вар. Тетради сдаем

Самостоятельная работа

VII. Задание на дом. Продолжение творческой работы: «Дом». Внести «Дом» в прямоугольную систему координат. Придумать для другой группы интересную задачу в этой координатной плоскости.

Как найти координаты точки?

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Определение координат точки

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

фиксируем: A (1; 2) и B (2; 3)

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
    Начало координат — точка O
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
    оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
     оси ординат, имеют одинаковые ординаты
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
    Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0)
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
    Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y)

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
    Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
    Подняться из этой точки параллельно оси Oy вверх на 2 единицы

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Расположение координатных четвертей на графике

Ответ:Во-первых, речь идёт НЕ о графиках функций, а о нумерации четвертей, или квадрантов, при отсчёте углов вращения вокруг неподвижной точки (начала координат), в частности, в связи с тригонометрическими функциями. Во-вторых, в математике принят (во всём мире!) стандарт: вращение ПРОТИВ часовой стрелки считать в положительном направлении.

Соответственно, нумерация четвертей производится ПРОТИВ часовой стрелки, то есть в ПОЛОЖИТЕЛЬНОМ направлении.

  • Комментарии
  • Отметить нарушение

Ответ

Ответ:

Пошаговое объяснение:

Координатная плоскость — плоскость, в которой построена система координат. Обозначается плоскость как «x0y».

Обращаем ваше внимание на выбор длины единичных отрезков по осям.

Цифры, обозначающие числовые значения на осях можно располагать как справа, так и слева от оси «Oy». Цифры на оси «Ox», как правило, пишут внизу под осью.

Обычно единичный отрезок на оси «0y» равен единичному отрезку на оси «0x». Но бывают случаи, когда они не равны друг другу.

Оси координат делят плоскость на 4 угла, которые называют координатными четвертями. Четверть, образованная положительными полуосями (правый верхний угол), считают первой I.

Отсчитываем четверти (или координатные углы) против часовой стрелки.

Выясним, как в тригонометрии координатные четверти связаны с градусной и радианной мерой углов.

Тригонометрические углы получают в результате поворота луча OP вокруг точки O. Поэтому точка P соответствует углу 0°.

При положительном направлении обхода поворот луча происходит по часовой стрелке. Градусная мера всей окружности равна 360°. Каждая из четвертей занимает угол в 90°.

I координатной четверти соответствуют углы от 0° до 90°,

II — от 90° до 180°,

III — от 180° до 270°,

IV — от 270° до 360°.

Переводя градусную меру в радианную, получим аналогичное разбиение окружности по координатным четвертям в радианах:

Углы 0°, 90°, 180°,270°, 360° не принадлежат ни одной из координатных четвертей.

Отрицательные значения углов получают поворотом луча против часовой стрелки. Соответственно, иллюстрация разбиения по координатным четвертям в этом случае выглядит так:

Определить, углом какой четверти является угол:

а) 47°; -24°; 300°; 185°; -203°;1200°;

а) 47° — угол I координатной четверти, так как 0°

7π/6 — угол II координатной четверти, так как

Сравнение радианной меры угла с 0, π/2, π, 3π/2 и иногда вызывает затруднения. В этом случае можно перевести радианную меру в градусную.

Другой способ: если дробь неправильная, можно найти ближайшее к коэффициенту перед π в числителе число, которое делится нацело на знаменатель, и представить числитель как сумму (или разность) этого целого числа и остатка.

Очевидно, что 7π/6>π. Поскольку π/6 — острый угол, то π/6

откуда 13π/8 — угол IV координатной четверти.

значит — 9π/5 — угол I четверти.

Следовательно, 19π/4 — угол II четверти.

Этот урок посвящен изучению координатной плоскости. Мы рассмотрим, для чего используются координатные плоскости, разберем основные сведения. Также на уроке мы узнаем способ получения координатной плоскости из обычной и решим задачи, в которых научимся строить точки по заданным координатам и определять координаты точек, изображенных на координатной плоскости.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Связь числа и геометрии. Часть 2. Треугольники. Координаты»

Основные сведения о координатной плоскости

Как известно, на каждом доме указаны его номер и название улицы – это адрес дома. На билете в любой зрительный зал написаны номер ряда и номер места – это адрес кресла. Для определения положения точки на глобусе надо знать долготу и широту – это адрес географической точки (географические координаты). Каждый объект имеет свой упорядоченный адрес (координаты). Таким образом, адрес или координаты – это числовое или буквенное обозначение того места, где находится объект.

Математиками была разработана модель, которая, в частности, позволяет описать любой зрительный зал (расположение мест в зале). Такая модель получила название координатная плоскость.

Чтобы из обычной плоскости получить координатную, необходимо начертить две перпендикулярные прямые, отмечая стрелками направления «вправо» и «вверх» (см. Рис. 1). На прямые наносят деления, как на линейку, причем точка пересечения прямых – это нулевая отметка для обеих шкал. Горизонтальную прямую обозначают Две перпендикулярные оси

Рис. 1. Координатная плоскость

Координаты точки

Для любой точки на координатной плоскости можно указать два числа (координаты). На рисунке 2 показана точка

Рис. 2. Определение координат точек на координатной плоскости

Можно сделать все и в обратном порядке. То есть изобразить точку на плоскости по известным координатам.

1. Построить точки по заданным координатам Для построения точки Для построения точки

Рис. 3. Построение точек на координатной плоскости по заданным координатам

2. Построить точки по заданным координатам Для построения точки Для построения точки

Рис. 4. Построение точек на координатной плоскости по заданным координатам

Таким образом, если нулю равна координата Задача

1. Выписать координаты точек 2. Изобразить точки

Рис. 5. Иллюстрация к задаче

1. Для определения координат точки Для определения координат точки Точка Точка

Рис. 6. Иллюстрация к задаче

2. Для построения точки Координата Для построения точки Координата Две координаты точки

Рис. 7. Иллюстрация к задаче

Координатные четверти

Координатные оси разбивают координатную плоскость на четыре части – четверти. Порядковые номера четвертей принято считать против часовой стрелки (см. Рис. 8).

Рис. 8. Нумерация четвертей координатной плоскости

Если точка имеет положительную координату Если точка имеет отрицательную координату Если точка имеет отрицательную координату Если точка имеет положительную координату Например, у точки

Рис. 9. Координата в данном случае – это расстояние, на которое отъехал автомобиль

Рис. 10. Координата в данном случае – этаж, на котором находится лифт

В математике такая система координат представлена числовой или координатной осью. Чтобы из любой прямой получить координатную ось, необходимо отметить на прямой начало отсчета, масштаб и направление отсчета (см. Рис. 11). По одной координате можно однозначно понять, где находится точка.

Рис. 11. Координатная ось

Размерность пространства может быть равной трем (пространство, в котором мы живем, имеет три измерения). Для указания места положения точки в этом случае нужны три координаты. Например, если в высотном здании на каждом этаже находится кинотеатр, то для указания места в билете должны быть указаны три координаты – этаж, ряд, номер кресла. В математике такая система координат строится точно так же, как на плоскости, только добавляется третья ось (см. Рис. 12).

Рис. 12 Декартова система координат в пространстве

2. Другой метод задания координат точки (использование полярной системы координат на плоскости).

Проводится ось

Рис. 13. Полярная система координат на плоскости

В трехмерном пространстве строятся аналогичные системы, например сферическая или цилиндрическая система координат.

Таким образом, прямоугольная система координат широко применяется в математике, но не является единственной.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. – М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. – Гимназия. 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – М.: Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5–6 класс. – М.: ЗШ МИФИ, 2011.

5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5–6. Пособие для учащихся 6-х классов заочной школы МИФИ. – М.: ЗШ МИФИ, 2011.

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5–6 классов средней школы. – М.: Просвещение, Библиотека учителя математики, 1989.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт mathematics-repetition.com (Источник)

2. Интернет-сайт youtube.com (Источник)

3. Интернет-сайт exponenta.ru (Источник)

Домашнее задание

1. Вопросы в конце раздела 45 (§9), задание 1393, 1394, 1396, 1398 (стр. 245-246) – Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6 (Источник)

2. Выберите точки расположенные выше оси абсцисс: 3. В координатной плоскости построить следующие точки, соединяющие их последовательно с предыдущей точкой отрезком (получите определенный рисунок): Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Прямоугольная система координат

Иногда в жизни, чтобы найти на плоскости какой-то объект, его описывают двумя значениями. Так каждое место в зале кинотеатра имеет два параметра: ряд и место. Каждая клетка на шахматной доске или при игре в «морской бой» описывается номером строки и буквой, обозначающей столбец.

В математике определение местоположения объекта на плоскости придумали быстро находить с помощью системы координат, образованной двумя прямыми, называемых координатными осями (или осями координат).

Ось координат

Абсцисса, ордината, начало координат и единичный отрезок

Эти оси имеют общепринятые наименования. А именно, горизонтальную ось именуют осью абсцисс и на письме обозначают $Ох$

Вертикальную ось называют осью ординат и на письме обозначают $Оу$

Оси пересекаются под прямым углом перпендикулярно друг к другу, поэтому такая система координат и называется прямоугольной.

Место пересечения осей координат является началом отсчета. Обычно эту точку обозначают буквой $О$ и называют началом координат. Ее называют еще иногда нулевой точкой.

На каждой оси выбирается единичный отрезок, с помощью которого вычисляются координаты объекта. Длиной единичного отрезка может выступать любая единица измерения, но она должна быть одинаковой на каждой из осей. То есть, если единичный отрезок на оси абсцисс задан, например, равным 1 см, то и на оси ординат единичный отрезок тоже должен быть равен одному сантиметру.

Абсцисса, ордината, начало координат и единичный отрезок

Положительное и отрицательное направление

У осей стрелкой задается положительное направление:

  • так обычно у оси $Ох$ положительным считается направление вправо;
  • у оси $Оу$ положительным считается направление снизу вверх.

В таком случае часть прямой $Ох$ левее точки $О$ будет принимать отрицательные значения. Аналогично часть прямой $Оу$ ниже точки отсчета $О$ будет также принимать отрицательные значения.

Таким образом, все вместе:

  • начало координат $О$
  • пересекающиеся под прямым углом оси $Ох$ и $Оу$ с заданными направлениями
  • заданный единичный отрезок

образуют в математике прямоугольную систему координат, плоскость называют координатной.

Или другими словами:

На письме система координат обозначается $Оху$

Четверти

Осями координат плоскость делится на 4 части, их обозначают римскими цифрами. Каждая часть называется «квадрант». Другие названия: «координатный угол» или «четверть». Нумерация четвертей принята против часовой стрелки в том порядке, в котором указано на рисунке ниже.

Четверти координатной плоскости

В квадранте I значения $х$ и $у$ будут больше 0 (или положительными). Отсюда следует, что если координаты объекта $х$ и $у$ – числа положительные, то он находится в I квадранте.

В квадранте II значения $у$ будут также положительными, а координаты $х$ будут иметь знак минус.

В квадранте III обе координаты $х$ и $у$ будут иметь отрицательные значения.

В последнем IV квадранте значение $х$ будет положительным, а $у$ отрицательным.

Немного из истории

В латинском языке слово «координаты» получилось из двух других: co – «совместно» и ordinatus – «определенный», «упорядоченный».

Впервые необходимость нахождения координат объектов возникла в географии и астрономии. Для этого использовали широту и долготу, определяющие расположение точки на небесной сфере или на поверхности земного шара. Таким образом начали вычислять координаты точек еще в 14 веке. Но упорядочил и систематизировал все знания в 17 веке французский математик по имени Рене Декарт. Поэтому прямоугольную систему координат также называют еще и «декартовой».

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector